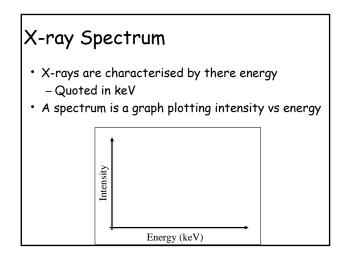
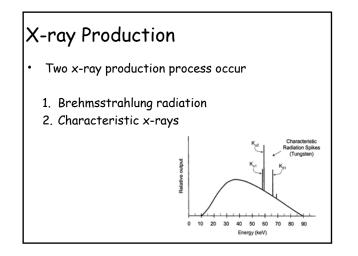
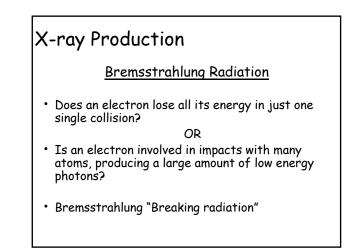
PAM1014 Introduction to Radiation Physics

"X-Ray Production"

In This Lecture


- X-rays
 - Brief History
 - Production
 - X-ray Tube – Spectrum


History


- X-rays and radioactivity were discovered by accident
- Wilhelm Roentgen (1895)

X-ray Production Overview Electrons accelerated towards target Deceleration of electrons in striking a target Energy released as high frequency electromagnetic radiation

Bremsstrahlung radiation

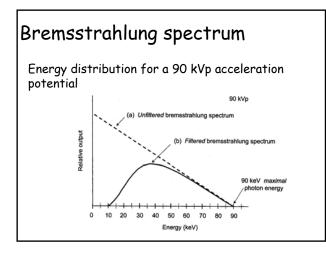
- Bremsstrahlung is characterized by: – Continuous distribution of radiation
 - Referred to as 'the continuous x-ray spectrum'
- More intense and shifting towards higher frequencies when the energy of the bombarding electrons is increased.

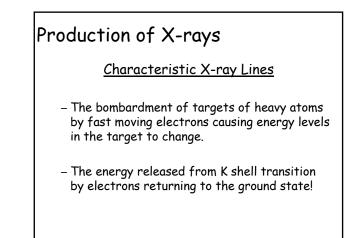
Bremsstrahlung radiation

- An electron can lose any amount of its kinetic energy in an interaction with the target atom
- Bremsstrahlung radiation associated with the loss can take on a corresponding range of values.

Bremsstrahlung radiation

- An electron with kinetic energy of 70 keV can lose:
 - All
 - None
 - Any intermediate level

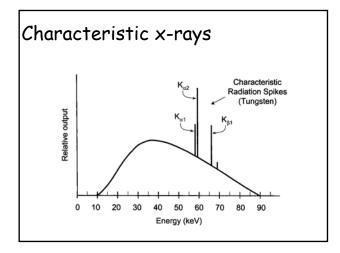

of its kinetic energy in a Bremsstrahlung interaction


Bremsstrahlung radiation

- Bremsstrahlung emission can have an energy in the range of 0 to 70 keV.
- 70 keV corresponds to the cut off wavelength

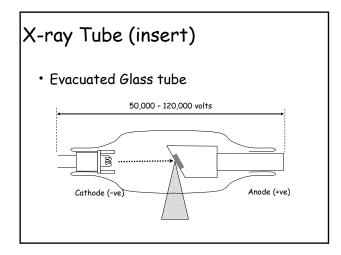
E(eV)= hc/ λ λ_{min} = hc/eV_{max}

• Different from the production of characteristic x-rays that have discrete energies.

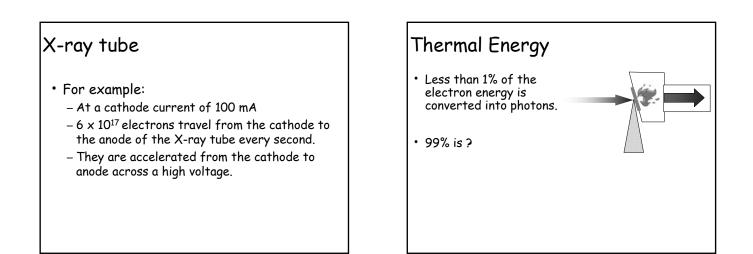


Characteristic x-rays

- Produced by transitions of orbital electrons from outer to inner shells.
- Bombarding electrons can release electrons from inner energy level orbits.
 - Higher electrons then fall into the vacancy.
 - If the energy gap between the levels is sufficient Xray will be produced.


Characteristic x-rays

- Electron binding energy for every element is different
 - Unique characteristic X-rays.
- 'Characteristic' because it has precisely fixed, or discrete, energies.
- Effective energy characteristic X-rays increases with increasing atomic number of the target element.


X-Ray Tube

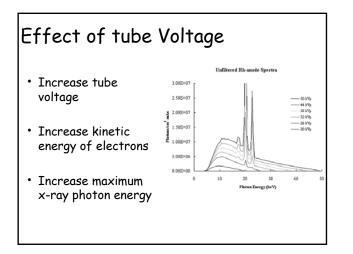
- How do we accelerate these electrons?
- Electric Field
- Energy in keV
- Energy in Joules = e x Voltage

X-ray tube

- Source of Electrons
- Filament
- Electrons are produced by thermionic emission in the cathode.
- Heated by a relatively low current supply.

Thermal Energy

- The electrons interact with the outershell electrons of the target atoms but do not transfer sufficient energy to these outer-shell electrons to ionize them.
- Outer-shell electrons are simply raised to an excited, or higher, energy level.


Thermal Energy

- The outer-shell electrons drop back to their normal energy state emitting infrared radiation.
- Constant excitation and re-stabilization of outer-shell electrons is responsible for the heat generated in the anodes of X-ray tubes.

Target Material

- High Z (proton number) so that transitions of high enough energy to emit X-ray radiation are possible
- High melting point because so much heat energy is produced.
- Tungsten is ideal for standard diagnostic tubes
- Molybdenum is ideal for mamography tubes

Effect of Tube Current • What is the tube current? output Relative o • No difference in shape 0 10 20 30 40 50 60 70 Energy (keV) • Different area under curve More electrons = more photons

Summary

- X-rays
 - Brief History
 - Production
 - X-ray Tube
 - Spectrum